
Simulink®

Modeling Guidelines for Code Generation

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Modeling Guidelines for Code Generation
© COPYRIGHT 2010–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2010 Online only New for Version 1.0 (Release 2010b)
April 2011 Online only Revised for Version 1.1 (Release 2011a)
September 2011 Online only Revised for Version 1.2 (Release 2011b)
March 2012 Online only Revised for Version 1.3 (Release 2012a)
September 2012 Online only Revised for Version 1.4 (Release 2012b)
March 2013 Online only Revised for Version 1.5 (Release 2013a)
September 2013 Online only Revised for Version 1.6 (Release 2013b)
March 2014 Online only Revised for Version 1.7 (Release 2014a)
October 2014 Online only Revised for Version 1.8 (Release 2014b)
March 2015 Online only Revised for Version 1.9 (Release 2015a)
September 2015 Online only Revised for Version 1.10 (Release 2015b)
March 2016 Online only Revised for Version 1.11 (Release 2016a)
September 2016 Online only Revised for Version 1.12 (Release 2016b)
March 2017 Online only Revised for Version 1.13 (Release 2017a)
September 2017 Online only Revised for Version 1.14 (Release 2017b)
March 2018 Online only Revised for Version 1.15 (Release 2018a)
September 2018 Online only Revised for Version 1.16 (Release 2018b)
March 2019 Online only Revised for Version 1.17 (Release 2019a)
September 2019 Online only Revised for Version 1.18 (Release 2019b)
March 2020 Online only Revised for Version 1.19 (Release 2020a)
September 2020 Online only Revised for Version 1.20 (Release 2020b)
March 2021 Online only Revised for Version 1.21 (Release 2021a)
September 2021 Online only Revised for Version 1.22 (Release 2021b)
March 2022 Online only Revised for Version 1.23 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Introduction
1

Motivation . 1-2

Guideline Template . 1-3

Block Considerations
2

cgsl_0101: Zero-based indexing . 2-2

cgsl_0102: Evenly spaced breakpoints in lookup tables 2-3

cgsl_0103: Precalculated signals and parameters 2-4

cgsl_0104: Modeling global shared memory using data stores 2-7

cgsl_0105: Modeling local shared memory using data stores 2-10

Modeling Pattern Considerations
3

cgsl_0201: Redundant Unit Delay and Memory blocks 3-2

cgsl_0202: Usage of For, While, and For Each subsystems with vector
signals . 3-6

cgsl_0204: Vector and bus signals crossing into atomic subsystems or
Model blocks . 3-7

cgsl_0205: Signal handling for multirate models 3-12

cgsl_0206: Data integrity and determinism in multitasking models . . . 3-14

iii

Contents

Configuration Parameter Considerations
4

cgsl_0301: Prioritization of code generation objectives for code efficiency
. 4-2

cgsl_0302: Diagnostic settings for multirate and multitasking models
. 4-3

iv Contents

Introduction

• “Motivation” on page 1-2
• “Guideline Template” on page 1-3

1

Motivation
MathWorks intends the guidelines for engineers developing models and generating code for
embedded systems using Model-Based Design with MathWorks products. The guidelines provide
recommendations for model settings, block usage, and block parameters that impact simulation
behavior or code generated by the Embedded Coder® product.

The guidelines do not address model style or development processes. For more information about
creating models in a way that improves consistency, clarity, and readability, see the “MAB Modeling
Guidelines”. Development process guidance and additional information for specific standards is
available with the IEC Certification Kit (for ISO 26262 and IEC 61508) and DO Qualification Kit (for
DO-178) products.

Disclaimer While adhering to the recommendations in the guidelines will reduce the risk that an
error is introduced during development and not be detected, it is not a guarantee that the system
being developed will be safe. Conversely, if some of the recommendations in the guidelines are not
followed, it does not mean that the system being developed will be unsafe.

1 Introduction

1-2

Guideline Template
Guideline descriptions are documented, using the following template. Companies that want to create
additional guidelines are encouraged to use the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)
Description Description of the guideline
Prerequisites Links to guidelines that are prerequisites to this guideline (ID: Title)
Notes Notes for using the guideline
Rationale Rationale for providing the guideline
Model
Advisor
Check

Title of and link to the corresponding Model Advisor check, if a check exists

References References to standards that apply to guideline
See Also Links to additional information
Last Changed Version number of last change
Examples Guideline examples

 Guideline Template

1-3

Block Considerations

• “cgsl_0101: Zero-based indexing” on page 2-2
• “cgsl_0102: Evenly spaced breakpoints in lookup tables” on page 2-3
• “cgsl_0103: Precalculated signals and parameters” on page 2-4
• “cgsl_0104: Modeling global shared memory using data stores” on page 2-7
• “cgsl_0105: Modeling local shared memory using data stores” on page 2-10

2

cgsl_0101: Zero-based indexing
ID: Title cgsl_0101: Zero-based indexing
Description Use zero-based indexing for blocks that require indexing. To set up zero-based

indexing, do one of the following:
A For the Index Vector block parameter Data port order, select Zero-based

contiguous.
B Set block parameter Index mode to Zero-based for the following blocks:

• Assignment
• Selector
• For Iterator
• Find Nonzero Elements

Notes The C language uses zero-based indexing.
Rationale A, B Use zero-based indexing for compatibility with integrated C code.

A, B Results in more efficient C code execution. One-based indexing requires a
subtraction operation in generated code.

See Also “hisl_0021: Consistent vector indexing method”
Last Changed R2011b
Examples

Recommended

void ZeroIndex(void)
{
 Y.Out5 = 3.0 * ZeroIndexArray[IndexSel_Zero];
}

Not Recommended

void OneIndex(void)
{
 Y.Out1 = OneIndexArray[IndexSel_One - 1] * 6.3;
}

2 Block Considerations

2-2

cgsl_0102: Evenly spaced breakpoints in lookup tables
ID: Title cgsl_0102: Evenly spaced breakpoints in lookup tables
Description When you use Lookup Table and Prelookup blocks,

A With non-fixed-point data types, use evenly spaced data breakpoints for the
input axis

B With fixed-point data types, use power of two spaced breakpoints for the input
axis

Notes Evenly spaced breakpoints can prevent generated code from including division
operations, resulting in faster execution.

Rationale A Improve ROM usage and execution speed.
B Improve execution speed.

When compared to unevenly spaced data, power-of-two data can

• Increase data RAM usage if you require a finer step size
• Reduce accuracy if you use a coarser step size

Compared to an evenly spaced data set, there should be minimal cost in
memory or accuracy.

Model Advisor Checks By Product > Embedded Coder > Identify questionable fixed-point operations

For check details, see “Identify questionable fixed-point operations” (Embedded Coder).
See Also “Formulation of Evenly Spaced Breakpoints”
Last Changed R2010b

 cgsl_0102: Evenly spaced breakpoints in lookup tables

2-3

cgsl_0103: Precalculated signals and parameters
ID: Title cgsl_0103: Precalculated signals and parameters
Description Precalculate invariant parameters and signals by doing one of the

following:
A Manually precalculate the values
B Set these configuration parameters:

• Set Default parameter behavior to Inlined
• Select Inline invariant signals

Notes Precalculating variables can reduce local and global memory usage and
improve execution speed. If you set Default parameter behavior to
Inlined and enable Inline invariant signals, the code generator
minimizes the number of run-time calculations by maximizing the
number calculations completed before run time. In some cases, this can
lead to a reduction in the number of parameters stored. However, the
algorithms the code generator uses have limitations. In some cases, the
code is more compact if you calculate the values outside of the Simulink
environment. This can improve model efficiency, but can reduce model
readability.

Rationale A, B Precalculate data, outside of the Simulink environment, to
reduce memory requirements of a system and improve run-time
execution.

Last Changed R2012b

2 Block Considerations

2-4

ID: Title cgsl_0103: Precalculated signals and parameters
Examples In the following model, the four paths are mathematically equivalent.

However, due to algorithm limitations, the number of run-time
calculations for the paths differs.

Path_1 = InputSignal * -3.0 * 3.0;

/* Product: '<Root>/Product4' incorporates:
 * Inport: '<Root>/In1'
 */
Path_2 = InputSignal * -9.0;

/* Product: '<Root>/Product2' incorporates:
 * Constant: '<Root>/Constant2'
 * Inport: '<Root>/In1'
 */
Path_3 = -9.0 * InputSignal;

/* Product: '<Root>/Product5' incorporates:
 * Constant: '<Root>/Constant2'
 * Inport: '<Root>/In1'
 */
Path_4 = -3.0 * InputSignal * 3.0;

/* Product: '<Root>/Product6' incorporates:
 * Constant: '<Root>/Constant3'
 * Inport: '<Root>/In1'
 */
Pre_Calc_1 = -9.0 * InputSignal;

To maximize automatic precalculation, add signals at the end of the set
of equations.

Inlining data reduces the ability to tune model parameters. You should
define parameters that require calibration to allow calibration. For more

 cgsl_0103: Precalculated signals and parameters

2-5

ID: Title cgsl_0103: Precalculated signals and parameters
information, see “Create Tunable Calibration Parameter in the
Generated Code” (Simulink Coder).

2 Block Considerations

2-6

cgsl_0104: Modeling global shared memory using data stores
ID: Title cgsl_0104: Modeling global shared memory using data stores
Description When using data store blocks to model shared memory across multiple

models:
A Set configuration parameters Duplicate data store names to

error for models in the hierarchy.
B Define the data store using a Simulink Signal or MPT Signal

object.
C Do not use Data Store Memory blocks in the model.

Notes If multiple Data Store blocks use the same data store name within a
model, then Simulink interprets each instance of the data store as having
a unique local scope.

Use Duplicate data store names to help detect unintended identifier
reuse. For models intentionally using local data stores, set the diagnostic
to warning. Verify that only intentional data stores are included.

Merge blocks, used in conjunction with subsystems operating in a
mutually exclusive manor, provide a second method of modeling global
data across multiple models.

Rationale A, B, C Promotes a modeling pattern where a single consistent data
store is used across models and a single global instance is
created in the generated code.

See Also • “hisl_0013: Usage of data store blocks”
• “hisl_0015: Usage of Merge blocks”
• “cgsl_0302: Diagnostic settings for multirate and multitasking

models” on page 4-3
• “cgsl_0105: Modeling local shared memory using data stores” on

page 2-10
Last Changed R2011b

 cgsl_0104: Modeling global shared memory using data stores

2-7

ID: Title cgsl_0104: Modeling global shared memory using data stores
Examples The following examples illustrate the use of data stores as global shared

memory. The data store is used to model a global fault flag. A data store
is required because the flag can be set in multiple functions and used in
the same execution step.

The top model contains three subsystems, each utilizing a data store
memory. The data store is defined using a signal data object.

Recommended

In this example, there are no Data Store Memory blocks. The resulting
code uses the same global variable for the full model.

2 Block Considerations

2-8

ID: Title cgsl_0104: Modeling global shared memory using data stores

Not Recommended

In this example, a Data Store Memory block is added into the Model
block subsystem. The model subsystem uses a local version of the data
store. The Atomic Subsystem use a different version.

 cgsl_0104: Modeling global shared memory using data stores

2-9

cgsl_0105: Modeling local shared memory using data stores
ID: Title cgsl_0105: Modeling local shared memory using data stores
Description When using data store blocks as local shared memory:

A Explicitly create the data store using a Data Store Memory
block.

B Clear block parameter Data store name must resolve to
Simulink signal object.

C Consider following a naming convention for local Data Store
Memory blocks.

Notes Use configuration parameter Duplicate data store names to help
detect unintended identifier reuse. For models intentionally using local
data stores, set the diagnostic to warning. Verify that only intentional
data stores are included.

Data store blocks are realized as global memory in the generated code.
If they are not assigned a specific storage class, they are included in the
DWork structure. In the model, the data store is scoped to the defining
subsystem and below. In the generated code, the data store has file
scope.

Rationale A, B Data store block is treated as a local instance of the data store
C Provides graphical feedback that the data store is local

See Also • “cgsl_0104: Modeling global shared memory using data stores” on
page 2-7

• “cgsl_0302: Diagnostic settings for multirate and multitasking
models” on page 4-3

• “hisl_0013: Usage of data store blocks”
Last Changed R2011b

2 Block Considerations

2-10

ID: Title cgsl_0105: Modeling local shared memory using data stores
Examples In some instances, such as a library function, reuse of a local data store

is required. In this example, the local data store is defined in two
subsystems.

The instance of localFlag is in scope within the subsystem
LocalDataStore_1 and its subsystems.

In the generated code, the data stores are part of the global DWork
structure for the model. Embedded Coder automatically assigns them
unique names during the code generation process.

 cgsl_0105: Modeling local shared memory using data stores

2-11

Modeling Pattern Considerations

• “cgsl_0201: Redundant Unit Delay and Memory blocks” on page 3-2
• “cgsl_0202: Usage of For, While, and For Each subsystems with vector signals” on page 3-6
• “cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks”

on page 3-7
• “cgsl_0205: Signal handling for multirate models” on page 3-12
• “cgsl_0206: Data integrity and determinism in multitasking models” on page 3-14

3

cgsl_0201: Redundant Unit Delay and Memory blocks
ID: Title cgsl_0201: Redundant Unit Delay and Memory blocks
Description When preparing a model for code generation,

A Remove redundant Unit Delay and Memory blocks.
Rationale A Redundant Unit Delay and Memory blocks use additional global memory. Removing

the redundancies from a model reduces memory usage without impacting model
behavior.

Last Changed R2013a
Example

Recommended: Consolidated Unit Delays
void Reduced(void)
{
 ConsolidatedState_2 = Matrix_UD_Test - (Cal_1 * DWork.UD_3_DSTATE + Cal_2 *
 DWork.UD_3_DSTATE);
 DWork.UD_3_DSTATE = ConsolidatedState_2;
}

Not Recommended: Redundant Unit Delays
void Redundant(void)
{
 RedundantState = (Matrix_UD_Test - Cal_2 * DWork.UD_1B_DSTATE) - Cal_1 *
 DWork.UD_1A_DSTATE;
 DWork.UD_1B_DSTATE = RedundantState;
 DWork.UD_1A_DSTATE = RedundantState;
}

3 Modeling Pattern Considerations

3-2

ID: Title cgsl_0201: Redundant Unit Delay and Memory blocks
 Unit Delay and Memory blocks exhibit commutative and distributive algebraic properties.

When the blocks are part of an equation with one driving signal, you can move the Unit
Delay and Memory blocks to a new position in the equation without changing the result.

For the top path in the preceding example, the equations for the blocks are:

1 Out_1(t) = UD_1(t)
2 UD_1(t) = In_1(t-1) * Cal_1

For the bottom path, the equations are:

1 Out_2(t) = UD_2(t) * Cal_1
2 UD_2(t) = In_2(t-1)

In contrast, if you add a secondary signal to the equations, the location of the Unit Delay
block impacts the result. As the following example shows, the location of the Unit Delay
block impacts the results due to the skewing of the time sample between the top and
bottom paths.

In cases with a single source and multiple destinations, the comparison is more complex.
For example, in the following model, you can refactor the two Unit Delay blocks into a
single unit delay.

 cgsl_0201: Redundant Unit Delay and Memory blocks

3-3

ID: Title cgsl_0201: Redundant Unit Delay and Memory blocks

From a black box perspective, the two models are equivalent. However, from a memory and
computation perspective, differences exist between the two models.

{
 real_T rtb_Gain4;
 rtb_Gain4 = Cal_1 * Redundant;
 Y.Redundant_Gain = Cal_2 * rtb_Gain4;
 Y.Redundant_Int = DWork.Int_A;
 Y.Redundant_Int_UD = DWork.UD_A;
 Y.Redundant_Gain_UD = DWork.UD_B;
 DWork.Int_A = 0.01 * rtb_Gain4 + DWork.Int_A;
 DWork.UD_A = Y.Redundant_Int;
 DWork.UD_B = Y.Redundant_Gain;
}

{
 real_T rtb_Gain1;
 real_T rtb_UD_C;
 rtb_Gain1 = Cal_1 * Reduced;
 rtb_UD_C = DWork.UD_C;
 Y.Reduced_Gain_UD = Cal_2 * DWork.UD_C;
 Y.Reduced_Gain = Cal_2 * rtb_Gain1;
 Y.Reduced_Int = DWork.Int_B;
 Y.Reduced_Int_UD = DWork.Int_C;
 DWork.UD_C = rtb_Gain1;
 DWork.Int_B = 0.01 * rtb_Gain1 + DWork.Int_B;
 DWork.Int_C = 0.01 * rtb_UD_C + DWork.Int_C;
}

In this case, the original model is more efficient. In the first code example, there are three
global variables, two from the Unit Delay blocks (DWork.UD_A and DWork.UD_B) and one
from the discrete time integrator (DWork.Int_A). The second code example shows a
reduction to one global variable generated by the unit delays (Dwork.UD_C), but there are
two global variables due to the redundant Discrete Time Integrator blocks (DWork.Int_B
and DWork.Int_C). The Discrete Time Integrator block path introduces an additional local
variable (rtb_UD_C) and two additional computations.

By contrast, the refactored model (second) below is more efficient.

3 Modeling Pattern Considerations

3-4

ID: Title cgsl_0201: Redundant Unit Delay and Memory blocks

{
 real_T rtb_Gain4_f:
 real_T rtb_Int_D;
 rtb_Gain4_f = Cal_1 * U.Input;
 rtb_Int_D = DWork.Int_D;
 Y.R_Int_Out = DWork.UD_D;
 Y.R_Gain_Out = DWork.UD_E;
 DWork.Int_D = 0.01 * rtb_Gain4_f + DWork.Int_D;
 DWork.UD_D = rtb_Int_D;
 DWork.UD_E = Cal_2 * rtb_Gain4_f;
}

{
 real_T rtb_UD_F;
 rtb_UD_F = DWork.UD_F;
 Y.Gain_Out = Cal_2 * DWork.UD_F;
 Y.Int_Out = DWork.Int_E;
 DWork.UD_F = Cal_1 * U.Input;
 DWork.Int_E = 0.01 * rtb_UD_F + DWork.Int_E;
}

The code for the refactored model is more efficient because the branches from the root
signal do not have a redundant unit delay.

 cgsl_0201: Redundant Unit Delay and Memory blocks

3-5

cgsl_0202: Usage of For, While, and For Each subsystems with
vector signals
ID: Title cgsl_0202: Usage of For, While, and For Each subsystems with vector signals
Description When developing a model for code generation,

A Use For, While, and For Each subsystems for calculations that require iterative
behavior or operate on a subset (frame) of data.

B Avoid using For, While, or For Each subsystems for basic vector operations.
Rationale A, B Avoid redundant loops.
See Also • “Loop unrolling threshold” (Simulink Coder) in the Simulink documentation
Last Changed R2010b
Examples The recommended method for preceding calculation is to place the Gain block outside

the For Subsystem. If the calculations are required as part of a larger algorithm, you
can avoid the nesting of for loops by using Index Vector and Assignment blocks.

Recommended

for (s1_iter = 0; s1_iter < 10; s1_iter++) {
 RecommendedOut[s1_iter] = 2.3 * vectorInput[s1_iter];
}

A common mistake is to embed basic vector operations in a For, While, or For Each
subsystem. The following example includes a simple vector gain inside a For
subsystem, which results in unnecessary nested for loops.

Not Recommended

for (s1_iter = 0; s1_iter < 10; s1_iter++) {
 for (i = 0; i < 10; i++) {
 NotRecommendedOut[i] = 2.3 * vectorInput[i];
 }
}

3 Modeling Pattern Considerations

3-6

cgsl_0204: Vector and bus signals crossing into atomic
subsystems or Model blocks
ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems or

Model blocks
Description When working with vector or bus signals and some of the signal elements are in an

atomic subsystem or a referenced model, use the following information to determine
how to select signal elements to minimize memory usage.
A Bus or vector entering an atomic subsystem:

Function packaging: Non-reusable function

Function interface: void_void
 Signals selected

outside subsystem
results in...

Signal selected
inside subsystem
results in...

Virtual Bus No data copies. No data copies.
Nonvirtual Bus No data copies. No data copies.
Vector A copy of the selected

signals in global block
I/O structure that is
used in the function.

No data copies.

Function packaging: Non-reusable function

Function interface: Allow arguments (Optimized)
 Signals selected

outside subsystem
results in

Signal selected
inside subsystem
results in

Virtual Bus No data copies. Only the
selected signals are
passed to the function.

No data copies. Only
the selected signals
are passed to the
function.

Nonvirtual Bus No data copies. Only the
selected signals are
passed to the function.

No data copies. The
whole bus is passed to
the function.

Vector A copy of the selected
signals in a local
variable that is passed
to the function.

No data copies. The
whole vector is passed
to the function.

 cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks

3-7

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems or
Model blocks

Function packaging: Reusable function
 Signals selected

outside subsystem
results in

Signal selected
inside the subsystem
results in

Virtual Bus No data copies. Only the
selected signals are
passed to the function.

No data copies. Only
the selected signals
are passed to the
function.

Nonvirtual Bus No data copies. Only the
selected signals are
passed to the function.
See example 1.

No data copies. The
whole bus is passed to
the function.

Vector A copy of the selected
signals in a local
variable that is passed
to the function.

No data copies. The
whole vector is passed
to the function.

3 Modeling Pattern Considerations

3-8

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems or
Model blocks
B Bus or vector entering a Model block:

 Signals selected
outside Model block
results in...

Signal selected
inside Model block
results in...

Virtual Bus No data copies. Only
selected signals are
passed to the function.

If Inport block
parameter Output as
nonvirtual bus is
selected, then there
are no data copies.
Only the selected
signals are passed to
the function.

If Inport block
parameter Output as
nonvirtual bus is
cleared, then a copy of
the whole bus is
passed to the function.

Nonvirtual Bus No data copies. Only the
selected signals are
passed to the function.

If Inport block
parameter Output as
nonvirtual bus is
selected, then there
are no data copies.
Only the selected
signals are passed to
the function.

If Inport block
parameter Output as
nonvirtual bus is
cleared, then a copy of
the whole bus is
passed to the function.
See example 2.

Vector A copy of the selected
signals in a local
variable that is passed
to the function.

No data copies. The
whole vector is passed
to the function.

Notes • Depending on Embedded Coder settings (e.g. optimizations), predecessor blocks
and signal storage classes, actual results might differ from the tables.

• Virtual busses do not support global data.
• If the subsystem is set to Inline, data copies do not occur.

Rationale A, B Minimize RAM, ROM, and stack usage
Last Changed R2016a

 cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks

3-9

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems or
Model blocks

Examples Example 1: Nonvirtual bus entering an atomic subsystem

• Function packaging: Reusable function
• Selection: Subsignal selected outside the subsystem

Only the selected signals are passed to the function:

3 Modeling Pattern Considerations

3-10

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems or
Model blocks
Example 2: Nonvirtual bus entering a model block

• Total number of instances allowed per top model: Multiple
• Selection: Subsignal selected inside the referenced model

There are no data copies in the code for the main model. The whole bus is passed to
the model reference function.

Code for the model reference function:

 cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks

3-11

cgsl_0205: Signal handling for multirate models
ID: Title cgsl_0205: Signal handling for multirate models
Description For multirate models, handle the change in operation rate in one of two ways:

A At the destination block, Insert a Rate Transition.
B Set configuration parameter Automatically handle rate transition for data

transfer to Always or Whenever possible.
Rationale A,B Following this guideline supports the handling of data operating at different

rates.
Note Setting Automatically handle rate transition for data transfer to Whenever

possible requires you to insert a Rate Transition block in locations indicated by
Simulink.

Setting Automatically handle rate transition for data transfer to Always allows
Simulink to automatically handle rate transitions by inserting a Rate Transition block.
The following exceptions apply:

• The insertion of a Rate Transition block requires rewiring the block diagram.
• Multiple Rate Transition blocks are required:

• The blocks' sample times are not integer multiples of each other

• The blocks use different sample time offsets

• One of the rates is asynchronous
• An inserted Rate Transition block can have multiple valid configurations.

For these cases, manually insert a Rate Transition block or blocks.

MathWorks does not recommend using Unit Delay and Zero Order Hold blocks for
handling rate transitions.

Last Changed R2011a

3 Modeling Pattern Considerations

3-12

ID: Title cgsl_0205: Signal handling for multirate models
Examples Not Recommended:

In this example, the Rate Transition block is inserted at the source, not at the
destination of the signal. The model fails to update because the two destination blocks
(Gain and Sum) run at different rates. To fix this error, insert Rate Transition blocks at
the signal destinations and remove Rate Transition blocks from the signal sources.
Failure to remove the Rate Transition blocks is a common modeling pattern that might
result in errors and inefficient code.

Recommended:

In this example, the rate transition is inserted at the destination of the signal.

 cgsl_0205: Signal handling for multirate models

3-13

cgsl_0206: Data integrity and determinism in multitasking
models
ID: Title cgsl_0206: Data integrity and determinism in multitasking models
Description For multitasking models that are deployed with a preemptive (interruptible) operating

system, protect the integrity of selected signals by doing one of the following:
A Select the Rate Transition block parameter Ensure data integrity during

data transfer .
B For Inport blocks in Function Called subsystems, select the block parameter

Latch input for feedback signals of function-call subsystem outputs.
To protect selected signal determinism, do one of the following:
C Select the Rate Transition block parameter Ensure deterministic data

transfer (maximum delay).
D • Select the configuration parameter Automatically handle rate transition

for data transfer.
• Set configuration parameter Deterministic data transfer to Whenever

possible or Always.
Prerequisites cgsl_0205:Signal handling for multirate models on page 3-12
Rationale A,B,

C,D
Following this guideline protects data against possible corruption of preemptive
(interruptible) operating systems.

Note Multitasking systems with a non-preemptive operating system do not require data
integrity or determinism protection. In this case, clear these parameters:

• Rate Transition block parameter Ensure data integrity during data transfer
• Configuration parameter Ensure deterministic data transfer (maximum delay)

Ensuring data integrity and determinism requires additional memory and execution
time. To reduce this additional expense, evaluate signals to determine the level of
protection that they require.

See Also • Rate Transition
• “Data Transfer Problems” (Simulink Coder)

Last Changed R2011a

3 Modeling Pattern Considerations

3-14

Configuration Parameter Considerations

• “cgsl_0301: Prioritization of code generation objectives for code efficiency” on page 4-2
• “cgsl_0302: Diagnostic settings for multirate and multitasking models” on page 4-3

4

cgsl_0301: Prioritization of code generation objectives for code
efficiency
ID: Title cgsl_0301: Prioritization of code generation objectives for code efficiency
Description Prioritize code generation objectives for code efficiency by using the Code Generation

Advisor.
A Assign priorities to code (ROM, RAM, and Execution efficiency) efficiency

objectives.
B Select the relative order of ROM, RAM, and Execution efficiency based on

application requirements.
C Configure the Code Generation Advisor to run before generating code by

setting the Check model before generating code configuration parameter to
On (proceed with warnings) or On (stop for warnings).

Notes A model's configuration parameters provide control over many aspects of generated
code. The prioritization of objectives specifies how configuration parameters are set
when conflicts between objectives occur.

Prioritizing code efficiency objectives above safety objectives may remove initialization
or run-time protection code (for example, saturation range checking for signals out of
representable range). Review the resulting parameter configurations to verify that
safety requirements are met.

Rationale A, B, C When you use the Code Generation Advisor, configuration parameters conform
to the objectives that you want and they are consistently enforced.

See also • “Application Objectives Using Code Generation Advisor” (Simulink Coder)
• “Manage Configuration Sets for a Model”

Last Changed R2015b

4 Configuration Parameter Considerations

4-2

cgsl_0302: Diagnostic settings for multirate and multitasking
models
ID: Title cgsl_0302: Diagnostic settings for multirate and multitasking models
Description For multirate models using either single tasking or multitasking, set these

configuration parameters to warning or error:

• Single task rate transition
• Enforce sample time specified by Signal Specification blocks
• Detect multiple driving blocks executing at the same time step

For multitasking models, set these configuration parameters to warning or error:

• Multitask task rate transition
• Multitask conditionally executed subsystem
• Tasks with equal priority

If the model contains Data Store Memory blocks, set these configuration parameters to
Enable all as warnings or Enable all as errors:

• Detect read before write
• Detect write after read
• Detect write after write
• Multitask data store

Rationale Setting diagnostic configuration parameters improves run-time detection of rate and
tasking errors.

See Also • “Model Configuration Parameters: Diagnostics”
• “hisl_0013: Usage of data store blocks”
• “hisl_0044: Configuration Parameters > Diagnostics > Sample Time”
• “hisl_0303: Configuration Parameters > Diagnostics > Data Validity > Merge blocks”

Last Changed 2016a

 cgsl_0302: Diagnostic settings for multirate and multitasking models

4-3

	Introduction
	Motivation
	Guideline Template

	Block Considerations
	cgsl_0101: Zero-based indexing
	cgsl_0102: Evenly spaced breakpoints in lookup tables
	cgsl_0103: Precalculated signals and parameters
	cgsl_0104: Modeling global shared memory using data stores
	cgsl_0105: Modeling local shared memory using data stores

	Modeling Pattern Considerations
	cgsl_0201: Redundant Unit Delay and Memory blocks
	cgsl_0202: Usage of For, While, and For Each subsystems with vector signals
	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks
	cgsl_0205: Signal handling for multirate models
	cgsl_0206: Data integrity and determinism in multitasking models

	Configuration Parameter Considerations
	cgsl_0301: Prioritization of code generation objectives for code efficiency
	cgsl_0302: Diagnostic settings for multirate and multitasking models

